##Announcement This website is not going to updated. For online classes, we have migrated to the Institutional Microsoft Teams account. Please contact me if you have not been added to the class Team.'
####Welcome
“There are 10 types of people in this world. Those who understand binary, and those who doesn’t.”
Welcome to the course on Digital Electronics, where we will explore the very fundamental concepts that makes most of our modern consumer electronic products function.
####Office Hours Tues 12-1pm (Section A) Saturday 12-1pm (Section B) I will be in my office at EEE 222, and students are welcome to drop by with any questions/problems related to the class or for conceptual understanding of the topics. Other than office hours, prior appointment must be made to schedule a meeting. For any course related matter outside the class, preferred medium of communication is email
####Course Outline
####Lecture Notes
####Classtest Syllabus #####Classtest 1 Contents of Week 1 and Week 2 from above.
####Homework Problems N.B. - Please write the following on the top of the homework:
Name:
Student ID:
Course Number: EEE 303
Course Instructor: Dr. Sajid Muhaimin Choudhury
Homework Number: 1A Date of Submission: XX
#####Homework 1A An alien species have landed on earth that have four hands with 9 fingers on each hand (36 fingers in total). They follow a base-36 number system. We will define variable ‘X’ and variable ‘Y’ in their number system. The first 3 letters of your first name is variable X, last 3 letters of your last name is variable Y, first letter of your last name is variable Z (For example for Mahbubur Rahman, X=MAH, Y=MAN, Z=R, X,Y,Z are in base-36)
Problem 1: Convert X and Y to decimal, binary, hexadecimal and octal number
Problem 2: In binary and decimal, compute X+Y, X-Y. Compute 2’s complement of Y in binary and recompute X-Y
Problem 3: Represent the floating point number X.Y in IEEE single precision floating point number
Problem 4: Convert X to grey code and ASCII
Problem 5: Install Altera Quartus. Show the value of Z in Binary and hexadecimal. Attach a printed copy of the waveform with your file
#####Homework 1B Problem 1: Convert Z from problem 1 into binary and take the first 8 bits from the MSB. Assume the function f(A,B,C) is defined as these first 8 bits denoted by ‘G’. Write the truth table of the function, write the function in terms of Sum of Products and Product of Sum form, and draw a K-map of the function and reduce it to minimum form.
Problem 2: Write a verilog code that generates fibonacci sequence of a number. (https://en.wikipedia.org/wiki/Fibonacci_number)
Fibonacci number, F_n = F_(n-1) + F_(n-2); F_0 = 1; F_1 = 1
Input: clock Output: 16 bit fibonacci number
each time clock changes state from 0 to 1, the fibonacci number output is changed, showing from F_0, F_1, F_2 etc.
Case 1: F_0 = 1; F_1 = 1; (Regular fibonacci number) Case 2: F_0 = G; and F_1 = 1;
Show (print) output for both cases for 16 different clock changes
####Textbooks
####Additional Resources
Proteus Tutorial: https://www.youtube.com/watch?v=yt7Bhhvo-hU&list=PL72829A4E60EE90BE
Verilog Tutorial: ASIC World
Springer has a free book available to download from there website ( click here ) called Introduction to Logic Circuits & Logic Design with Verilog by B. J. LaMeres (DOI:https://doi.org/10.1007/978-3-030-13605-5_8). We will teach some of the lectures from this book as it has very intuitive approach to a lot of the problems.